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Positive and Negative Charged Rods 
Alternating Along a Line: Exact Results 
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The Coulomb system consisting of an equal number of positive and negative 
charged rods confined to a line with the charges alternating in sign along the 
line is considered. By replacing the line with a lattice, one can calculate the 
grand partition function and correlations exactly for one value of the coupling 
constant. The exact solution exhibits features forbidden in the corresponding 
continuous system, in which each pair of oppositely charged rods also interact 
via a short-range repulsive potential, and there is no restriction on the ordering 
of the charges. The sum rule indicating the phase of the system is identified. 

KEY WORDS:  Kosterlit~Thouless phase transition; two-component plasma. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

The two-species, log-potential Coulomb gas was first studied because of an 
analogy with the Kondo problem. (1'2) Specifically, one was led to consider 
a system consisting of an equal number of positive and negative charged 
rods confined to a circle and arranged so that the charges alternate in sign 
around the circle. In addition to the logarithmic potential between the 
charged rods, a short-range repulsive potential (range r, say) is needed so 
that the system does not collapse at low temperatures. The Coulomb gas is 
then a two-parameter system, characterized by the coupling constant 
F~-q2/k B T (q is the magnitude of the charges) and the quantity pz, which 
is the ratio of the range of the short-range repulsive potential v to the inter- 
particle spacing l/p. 

In a mapping valid in the low-density, pr ~ 0 limit, the free energy and 
dipole moment of the Coulomb gas were related to the ground-state energy 
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and susceptibility, respectively, of the Kondo problem. Furthermore, the 
length of the circle containing the charges is inversely related to the tem- 
perature in the Kondo problem, so the thermodynamic limit of the 
Coulomb gas reproduces the zero-temperature properties of the Kondo 
problem. We will be primarily interested in this case. 

As noted above, motivated by this analogy, two studies were made of 
the Coulomb gas. The first was by Anderson et al. ~1) They developed a 
scaling theory whereby pv is varied infinitesimally and the resulting grand 
partition function related to that of the same system with the original value 
of pv, but a different F. In fact, the scaling theory leads to a set of coupled 
differential equations for the free energy, F, and pr. These equations have a 
fixed point at the value of the coupling constant F = 2. This is a transition 
point (again we stress that such analysis can only be justified in the low- 
density, pr ~ 0 limit.) In the original Kondo problem it corresponds to a 
transition from antiferromagnetic (F < 2) to ferromagnetic (F > 2) coupling 
of the impurity spin. 

The two phases of the Kondo problem can be characterized by the 
susceptibility )0 For low temperatures T in the Kondo problem the suscep- 
tibility in the ferromagnetic regime behaves as 

Z,,,1/T (1.1) 

while in the antiferromagnetic regime 

Z ~ const > 0 (1.2) 

In the second of the aforementioned studies of the Coulomb gas, it was 
shown by Schotte and Schotte (2) that • is related to the dipole moment of 
the Coulomb gas. Specifically, 

1 
)~=-s 2) (1.3) 

where L is the circumference of the circle containing the Coulomb gas. But 
since L is proportional to 1/T, we have from (1.1) and (1.2) the results 

(( )) ~qixi--L/2 ~L for F < 2  (1.4) 

/ (~qix~-L/2~2~L 2 for F > 2  (1.5) \ \  / /  

Thus we are already in possession of some information regarding the 
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Coulomb gas, but for reasons to be discussed below, it is not 
straightforward to interpret these results. 

It is our purpose to investigate this Coulomb gas more closely. This 
study will be possible because of an exact solvability property of the 
Coulomb gas: if we put the system on a lattice, the free energy and n-par- 
ticle correlation functions can be calculated in closed form at the coupling 
F =  1. (In the original Kondo problem this corresponds to the exactly 
solvable Thouless limit.) By calculating the two- and three-particle 
correlation functions away from the ends of the system (even though the 
domain is a circle, the system is not translation invariant, because of the 
specified ordering of the charges), two special properties of this system are 
demonstrated. 

Firstly, at F =  1 the system is not in a conducting state, which means 
the charges are not free to respond to and screen an external charge density 
in the long wavelength limit. This in itself is not very surprising, since the 
specified ordering of the charges prevents redistribution of the charge den- 
sity to exactly screen an arbitrary charge density with total charge ~ N  u, 
N an integer. 

Secondly, even though the state is not conducting, the two-particle 
correlations decay a s  1/x 4 (x denoting the interparticle distance), the three- 
particle correlations decay at least as fast as 1Ix  3, and the dipole moment 
of the screening cloud about any two fixed charges within the system 
vanishes. This contrasts with the allowed behavior of a continuous system 
satisfying the first and second BGY equations (and thus not having any 
restrictions on the ordering of the charges). For then, precisely because of 
the above conditions on the decay of the correlations and the validity of 
the dipole moment sum rule imply that the system must be in a conducting 
state (Alastuey and Martin~3)). 

In the last section we discuss these results with respect to the phase of 
the system. In particular we identify the dipole moment sum rule as the 
phase indicator. 

2. E X A C T  S O L U T I O N  A T  F = I  

To properly define the problem, we need to make an explicit choice of 
the short-range cutoff. For the exact solvability property we need to choose 
a lattice for this purpose. 

Divide a line of length L into M intervals so that there are sites at the 
points n L / M ,  n = 1, 2 ..... M .  Introduce an interlacing lattice at the points 
(n - 1 / 2 ) L / M ,  n = 1, 2,..., M .  Denote these lattices ~ and ~ ,  respectively. 
Allow N (~< M) positive charges to occupy Lf~ and N negative charges to 
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occupy 2,e 2. Impose periodic boundary conditions so that the pair potential 
is 

V( 01, 02)= - q  l q2 log[ I ez~i~ - e2~iO2/LI (L/2n)] (2.1) 

(this is equivalent to defining the system on a circle of circumference L). 
Denote the coordinates of the positive charges by m k L / M  and the 

coordinates of the negative charges by ( I x - 1 ~ 2 ) L / M ,  mk, lk----1, 2,.., M. 
Further denote 

wk = e 2~"k/M, zk = e 2"(tk- 1/2)/M (2.2) 

With this notation and the ordering of the charges 

l < l l < ~ m l ,  m 1 + l < 1 2 < ~ m 2  ..... m jv_ l+ l<~IN<~mN 
(2.3) 

l <<ml <<.m2~ . . .  <~mN~ m 

SO that they alternate in sign, the Boltzmann factor of the system for 
general F =- q2/k B T is 

m r =  (21z/L) r u  FI Iwk -- wjl Izk - zjl [zk - wil (2.4) 
l<~j<~k<~N k = l  

We will now proceed to transform (2.4) into a manageable expression 
for F =  1. Using the identity 

lei~176 l e-@+~176176 Oj>/Ok (2.5) 

and the Cauchy double alternant determinant formula 

det [(1 - wjzk) -1 ] = [-[ (wk - wj)(z~ - zj) (1 - zjwk) (2.6) 
l < ~ j < k < ~ N  t j = l  k = l  

we have 

W I = ( - - 2 ~ z i / L ) N ( k  l~I=x e~i(m~--tk+~/2)/M) Det[(1-ez~i(mj- lk+l/2)/M)-l]  (2.7) 

If we introduce a parameter p, I#l ~< 1, as a factor of the exponent in 
each term of the determinant, they can each be Taylor-expanded, and after 
familiar manipulation <4,s) we obtain 

Wl = ( - 2~i/L )N lim~- l- o~<~ ~ .... ,~N ( ~  1 

x Det[e  2~imj~j+ a/2~/M e-2~i(lJ- 1/2)(~k + X/2)/M] (2.8) 
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If we write 

~j=2j+kjM, 0 4 7 / ~ < M -  1, k / = 0 ,  1, 2 .... (2.9) 

it is s t raightforward to take the limit # --+ 1 and we obtain as our  working 
identity 

M--I  
ml = (~i/L)N Z Det [e2=imj{Tj+ 1/2)/M e-2,~i(lj-1/2)(7k+ 1/2)/M] (2.10) 

0 ~ 71 ,...,7N 

2.1. Grand Par t i t ion  Funct ion  

For  this system the part i t ion function Z N is given by 

z =Z w1 (2.11) 
X 

where X denotes the restricted range (2.3), and the grand par t i t ion function 
is given by 

M 
Z= ~ ~2kZ N (2.12) 

k=0 

where ~ denotes the activity. 
To calculate ZN, we first sum over  the lk in order,  k = 1, 2,..., N. F r o m  

the structure of the determinant  (2.10), the sums can be performed row-by- 
row. After summing over 11 from 1 to ml in the first row, we proceed to 
sum over 12 from ml + 1 to m 2 in the second row. But 

m2 m2 ml 
Z = Z - Z (2.13) 

12=rnl + 1 12=1 12=1 

and since the summand  is the same as in the first row, by adding an 
appropr ia te  multiple of the first row to the second row we are left with 

m2 
e2~im2(Y2+ 1/2) Z e - 2 ~ i ( l -  l/2)(yk+ 1/2)/M 

/=1 

= e 2=em2/72 + 1/2)(1 - e - 2"+m2<Te + 1/2)/M)[2i sin ~z(y k + 1/2)/M] -1 (2.14) 

for the second row. Proceeding similarly in each of the remaining sums 
l 3,..., lu, we obtain 

( . /~)N f M~I (=i~l 1 ) = - -  ~, 
ZN ~ l<~rnl~'"~mN<~N kO4yl,...,TN 1 sin*t(yl+ l/2)/M 

x Det[e2=im+<T2 + U2)/M(1 -- e 2"m(Tk+ m ) / g ) j ~  (2.15) 
J 



158 Forrester 

The expression within the brackets { } is a symmetric function of the 
m's. To see this, suppose we interchange mt and mr. But interchanging 7~ 
and yt, clearly leaves the value of this expression unchanged, and then 
interchanging both t h e / t h  and / ' t h  rows and t h e / t h  a n d / ' t h  columns also 
leaves the value of the expression unchanged and returns it to its original 
form. Thus, we can drop the ordering constraint on the sum over the m's 
provided we divide by N! 

The mj can now be summed over from 1 up to M row-by-row. Noting 

M 
E e2=im(yj+ 1/2)/M __ e2nim(yj 7k)/M 

m = l  

= -2/(1 -- e-2~i(TJ+ U2)/Mx _ AA'A ] ~r-t v y j -  yk,0 / x  (2.16) 

where the 6 denotes the Kronecker delta, we obtain 

ZN = \2L] N! o~<~l,...,~N - t= ,  sin ~r(Tt+ 1/2)/M 

x Det[2(1 - - e  -2ni(yj+I/2)/M) 1 + Mc$~9_yk,O ] (2.17) 

If 7j = 7k, J ~ k, then in the above determinant two rows are the same, 
so we can choose yj ~-Yk" Therefore, since the expression is symmetric in 
the 7's, 

( ~ L )  N Q~I 1 ) 
ZN = Z sin n(7l + 1/2)/M 

0~<y l<  "'" <yN<~M 1 

• Det [M6j_ k,o + 2(1 - e - 2~i(rj+ 1/2)/M)-1] (2.18) 

To evaluate this determinant, we first take out the factor 

M/2j -  2/(1 -- e 2r~i(yj + 1/2)/M) 

from the j t h  row and then use the readily derived identity 

N N N 

d e t [ a , j ] = [ I  2j+ Z [I 2j 
j = l  k = l  j = l  

jv~k 

(2.19) 

where a o= 1 + 2j for i = j  and 1 otherwise. We thus have evaluated ZN, 
with the result 
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OtM/2L )N ~ sin ~(7, + 1/2 )/M ZN 
0~<~,l < -.. <~N<~M--1 

2 N 
x l  1 +~j~=l(l__e--2=i(yj+m/2)/M ) 1] 

= coefficient of ~2N in the expansion of the function 

[51(1+ 
l = 0  

~2 
x 1 + ~--~ 

2L sin rc(l + 1/2 )/MJ J 

MZ1 1 / \ )  

j=o sin rt(j + 1/2)/M + =(M/2 
(2.20) 

From (2.12) we see that this expression is in fact the grand partition 
function 2. Hence the pressure P is given by 

where 

tiP=-- lim --llog 
L~oo L 

( 1 &log 1-t (2.21) 
=7 \ 2~ sTn,~t/ 

= L/M (2.22) 

is the lattice spacing. 

2.2. Correlal t ion Funct ions 

Within the domain from zero to L the charges are ordered so that a 
negative charge is closest to the boundary at zero and a positive charge 
closest to the boundary at L. Thus, even with periodic boundary conditions 
the system is not translation invariant, nor is it invariant under charge 
negation. For example, the one-particle correlation is dependent on the 
position within the system and is different for each species of charge. 
However, we expect this effect to be confined to the neighborhoods of the 
boundaries. If the correlations are defined so that the test charges are 
located near the center of the system and then the thermodynamic limit is 
taken, the correlations will be translation invariant and have charge 
negation symmetry. We consider this case only in our exact results. 

We will be interested in calculating both the two- and three-particle 
correlation functions. Let us illustrate the procedure by giving some details 

822/45/1-2-11 
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of the calculation for the two-particle correlation between unlike charges. 
With l ,̀ - 1/2 denoting the coordinate of a fixed negative charge and m a the 
coordinate of a fixed positive charge, this correlation is defined as 

p_.+(la-- 1/2, m a )  = ,-~ ~ - 1  

M - - 1  

~2"Z(l`,, m`,) (2.23) 
n = 0  

where 

= ~x [1 +a(lk)][1 +b(mk) ] (2.24) Z(I`,, ma) 6a(la) fib(m,,) 1 ~=b=0 

Here X denotes the summation ranges (2.3), and 6/6a and 6/6b denote 
functional differentiation. 

Using the expression for W1 in (2.10), we first sum over the rs row-by- 
row, canceling terms as noted in the paragraph around (2.13), and then 
sum over the m's (again the summand is symmetric in the m's, so the 
ordering constraint can be dropped provided we divide by N!). This gives 

Z(l`,, m`,) = ~-~. Z Det [1 + a(/)][1 + b(/)] 
O<~yl,...,y N m = l  l = l  

e2~imj(vj+l/2)/M e z~i~b 1/2)~k+~/2)] (2.25) • 

3 

The functional differentiation can now be performd by differentiating the 
determinant row-by-row. Each determinant thus obtained is in fact the 
same, as can be seen by interchanging appropriate rows, columns, and 
summation labels. Hence 

where 

Z( la 'm` , )=(NS2)!  ~ ~" sinrc(7,+l/2)/M 
0 ~ 71,...,YN 

x 2(l_e-2,~i~ej+l/2)/M) 1 det[bj~] (2.26) 

l + 2 j ,  j = k ,  k ~ N - 1 ,  N - 2  
1, j r  k # N - - 1 ,  N- -2  
Ok, j = N - - 1  
(~k, j = N  

(2.27) 
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and 
~l k = _ e -  2rci(lo l /2)(~k+ 1/2)/M(e2~zi(la--1/2)(VN-i + I/2)/M .j_ erCi(vN L + 1/2)/M) 

sin rc(~,k + 1/2)/M 
x (2.28) 

sin ~(7N--1 + 1/2)/M 
~)k = e2~Zima(YN+ 1/2)/M( ] __ e 2~ima(Tk + I/2)/M) (2.29) 

The 2j are defined in the paragraph between (2.18) and (2.19). By elemen- 
tary row operations we readily find 

• )] Oet[byk]--  2l ~N-I,~)N) "~- fv(TN--l,~N) E g.~(7lc 
1 v = l  k = l  

where 

f o  ~ - f l  = (~)N~IN 1 - -  #]N~)N 1) 

f 2 = ~ N  1 - - ~ ) N ,  U 3 = ~ I N - - I / I N _ I  

gl = 1/2k, g2 = #/k/)~k, g3 = (~k/)Lk 

(2.30) 

(2.31) 

Inserting the 
(2.23), we have 

= ~ \ - 2 L J  1=o 1-~ 2~sin~r(l+l/2)/M 

• ) x ~ fo+-f-~ f~ ~ sin~(k+l/2)/M+rc~2M/2L 
YN-1 ~ 0  y N ~ 0  V = I  k = 0  

k#yN-I ,YN 

x(sin[.~(TN_M+I/2)],TC#2, ~ I f ,  [-7.C(~ N ~_ l / 2 ) I  ..~_ ~.~2~ -- 1 +~) ks,n[_ ~ -j ~ /  (2.32) 

functional form (2.30) in (2.26) and using the definition 

It now remains to insert the explicit form of the f ' s ,  g's, and E, and 
note that in the thermodynamic limit the sums become integrals. Recalling 
that the test charges at m a and I a -  1/2 are located near the center of the 
system, we see that only functions of m a -  l~ contribute. The final result is 

1 ) = p 2  So( la -ma- l /2 )S2( la -ma-1 /2)  
P- .+  l a - ~ ,  ma -~ ~z~2/2 r 

(2.33) 
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where 

So(x)= r 1 2T Jo dt sin 2r~xt (2.34) 

~ 2  ~1 dt sin 2~xt 
S2(x)  = 2~ Oo sin rtt + rt~2/2r (2.35) 

Although this result was derived with the assumption la > ma, it also holds 
for la ~< rna (and thus has charge negation symmetry). 

By proceeding similarly we obtain the further evaluations 

p +,+ (rna, rob) = p 2 - [C2(ma - mb)] 2 (2.36) 

P +. +, + (rna, rob, mc) = p3 + p [ p  +, + (m a, mb ) + P +, + (rnb, mc) 

+ p+,+(rnc, rn~)] 

+ 2C2(ma -- rob) C2(mb -- mc) C 2 ( m ~ -  m~I2.37) 

p _ + , + ( l a -  1/2, ma, mb) 

=p3 + p [ p _  + ( l a - 1 / 2 ,  m a ) +  p ,+(la--1/2,  m b ) +  p +,+(ma, m6)] 

+ C2(ma -- rob) [2S2(/a -- rna -- 1/2) S2(l a - mb -- 1/2) 

S2( la--m b -- 1/2) S o ( l a - m  a - 1/2) 
~2/2~ 

So( la-- m b - -  1/2)rc~2/2"rS2(la-m a - 1/2)] (2.38) 

where 

~ f] dt cos 27zxt 
C2(x) = sin rot + rt~2/2T (2.39) 

All other correlations can be deduced from these results by charge 
negation symmetry. (As noted above, the original system does not 
have charge negation symmetry. However, by explicit calculation, 
the correlations in the interior of the system do have this property, as 
expected.) 

3. S U M  RULES 

3.1. Perfect  Screening Sum Rule 

A good check on the accuracy of our working is to verify the perfect 
screening sum rule, (6/since it is thought to be equivalent to the existence of 
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the thermodynamic limit. This says that the amount of charge contained 
within the screening cloud of any charge (or group of charges) in the 
system is equal and opposite to that of the charge (or group of charges). 
Thus 

- ~ p_+(l-1/Z, ma)+ ~ p+.+(mb, ma)=--p (3.1) 
l - -  - - o ~  m b =  - - o o  

- ~ ,  Pr_,+.+(t--1/Z, ma, mb)+ ~ Pr+,+,+(m, rn~,mb) 
l =  - -  o o  m =  - -  ,9v 

= --2pT+,+(ma, mb) (3.2) 

where the T denotes the appropriate (two- or three-particle) truncated dis- 
tribution function. From the exact results (2.33) and (2.36)-(2.38), the 
screening sum rules (3.1) and (3.2) are readily verified. 

3.2. A s y m p t o t i c  Behav ior  of  the  Cor re la t ions  

In the continuous log-potential Coulomb system confined to a line, the 
state of the system (conducting or insulating) can be determined by the 
asymptotic behavior of the charge--charge correlation function. (7'8) This 
sum rule is the analogue of the Stillinger-Lovett sum rule for log-potential 
systems in a two-dimensional domain. A similar sum rule holds in the 
present case. 

Recall that a conducting state is characterized by its ability to screen 
an external charge density ~SPext = 2e i~x in the long-wavelength, k--+ 0 limit. 
In the lattice case this means that the change in charge density on 
neighboring lattice, sites (one available to positive charges, the other 
negative charges) will exactly compensate the amount of charge within a 
region of length ~ (the lattice spacing) in the external charge density. 

With (.  > ~ denoting the canonical average in the presence of the exter- 
nal charge density, C ( l - 1 /2 )  the microscopic charge density at point 
l - 1 / 2  of the negative charges, and C+(m) the microscopic charge density 
at point m of the positive charges, our characterization of the conducting 
state reads 

[<C ( I -  1/2)>~ + < C + ( 0 > ~ ] -  [ < C _ ( t -  1/2)>~= 0 + <C+(t)>~=o] 

~,. -2re ik~t as k --+ 0 (3.3) 

We now use a linear response relation, which equates the left-hand side of 
(3.3) to 

2fl{ ( [C_ ( l -  I/2) + C+ (/)] H, >~. = o 

- < [ C  (l-1/2)+C+(/)]>;=o<H,>~=0} (3.4) 
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Here H~, the additional Hamiltonian due to the external charge density, is 
given by 

2H1 =-(--~m~'~ =L-oo [e~'C+(m)+e~(" 1/2)C_(m- 1/2)] (3.5) 

After writing the canonical averages in (3.4) as truncated two-particle 
distributions and then equating to the right-hand side of (3.3), we obtain 
the k ~ 0, leading order singular behavior sum rule 

2 ~ i~m~ r r (3.6) e [p(~m,O q- (Iml) 1/21 vlkl p+,+ - p + , _ ( l m -  )] ~ rcF 
m =  - - o o  

From the theory of Fourier series (9) this is equivalent to saying that for 
large I ml 

- 1  
2[pr+,+(Iml)-pr+ _(lm - 1/21)] 7tZF[ml2 (3.7) 

From the exact expressions (2.33) and (2.36) (2.38) we readily deduce 
the large-distance decay of the correlations 

_~( 1 )4 
pT+,+(ma, ms)~ \ lr((ma_ms ) as Im~- ms[---, oo (3.8) 

p .+ la--~,ma rc~(l~,--ma-- 1/2) as Lla-m~l ~ oo (3.9) 

( , ) 2 ( 1 ) 2  
p T+,+, + (ma, ms, me) ~ 2r~-C2(ma -- ms) 7z~(m~-- ms) Tz~(m-~'-- ma) 

for ma, ms fixed and ImcI ~ oo (3.10) 

(1  ) 
T ---2' may p_,+,+ la mb 

~ - -  -~ C2(ma--rnb) [rC(la__mb_l/2)]3zc(la_ma_l/2) 

) [~(la--ma-- 1/2)] 3 ~(lo-- ms -- 1/2i 

for ma, m b fixed and I/a[ ~ oe (3.11) 
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Or+,+ (l~ 1 --~, ma, rob) 

( 1 .~2($2(1~--m~--1/2 ) 

<(mT- me)J \  (lo- me- 1/2) 

for la, ma fixed and me --+ oo 

So( la - rna - 1/2)'~ 

(3.12) 

Hence from (3.8) and (3.9) 
[pr+,+(lml)-pr+,_( m -  1/21)] ~ -222(1 /~m)  4 (3.13) 

which contradicts the sum rule (3.7), so we thus conclude that the system is 
in an insulating state. 

3.3. D ipole  M o m e n t  Sum Rule 

Suppose we fix two charges in the system and compare the charge den- 
sity after this even to before (that is, we consider the screening cloud of the 
fixed charges). The dipole moment sum rule says that the dipole moment of 
this screening cloud will vanish. 

Unlike the perfect screening sum rule, this sum rule is not thought to 
be generally true. Rather, by an analysis of the BGY equations, it apears 
for continuous systems that this sum rule breaks down if the system is not 
in a conducting state. (3'1~ (By saying this, we are of course assuming that 
the truncated three-particle distribution functions decay fast enough for the 
dipole moment to exist.) 

From (3.10)-(3.12) the three-particle correlations here decay at least 
as fast as O(1/x3), so the dipole moment sum rule is well defined. It states 

mPr+,+,+(rn, m,,,mb) - ~, (l--1/2)Pr_,+,+(l--1/2, m~,mb) 
m =  - -  o c o  l =  - -  o c o  

= _(m a + rnb) p+,+r (ma, mb) (3.14) 

m "  ~ - - o o  

rn' pr+, , + (m', la-- 1/2, ma) 

-- Z (l '-- 1/2) pr__,+(l'-- 1/2, l a -  1/2, rna) 
l ' =  - - o 9  

= E(/a-  1 / 2 ) - m a ]  p r  +(la_ 1/2, ma) (3.15) 
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Using the exact expressions (2.33) and (2.36)-(2.38), we find that these 
sum rules are obeyed. To illustrate our method of calculation, we give the 
derivation of (3.15) in the Appendix. 

4. D I S C U S S I O N  

Let us first address ourselves to the question of the phase of the 
system. We noted in the introduction that it seems clear that the system 
can never be in a conducting phase in the sense that the sum rule (3.13) 
will not be satisfied. Nevertheless the scaling theory of Anderson et al. (j) 
indicates a Kosterlitz-Thouless type phase transition at F = 2 .  Further- 
more, photographs taken in Schotte and Schotte's Monte-Carlo simulation 
show in visual terms that, for temperatures F > 2 ,  the system consists 
entirely of dipoles, while the region 2 > F >  1 has a domain structure, in 
which groups of dipoles are separated by a single positive or negative 
charge (no simulation was performed for F <  1). What sum rule charac- 
terizes the particular phase? 

To answer this question, we appeal to the analogy with the two-dimen- 
sional two-component plasma. Then it is known that the conducting phase 
can be characterized either by the Stillinger-Lovett or dipole moment sum 
rule.(lo). (3) This is intuitively reasonable since one would think that, with 
no restriction on the ordering of the charges, both these sum rules would 
hold if and only if there is a macroscopic number of free charges. We have 
argued that the analog of the Stillinger-Lovett sum rule (3.13) cannot be 
satisfied in the present system. Let us consider the dipole moment sum rule. 
With the test charges being chosen from those in the system, it would seem 
that here the restricted ordering of the charges plays no essential role. Thus 
we would expect that the dipole moment sum rule identifies the phase of 
the system, the rule being valid if and only if there is a macroscopic num- 
ber of free charges in the system, that is, for F < 2. Our exact result at F = 1 
is in agreement with these remarks. 

Now consider the results on the dipole moment (1.4) and (1.5). We 
would like to use these results to deduce the large distance decay of the 
two-particle correlations. Unfortunately, this is not possible since the 
canonical average relates to the finite system in which the system does not 
possess charge negation symmetry, and thus has a non-zero dipole 
moment. Hence, the canonical averages cannot be related to the second 
moment of the "bulk" (i.e. translation and charge negation invariant) two- 
particle correlation. However, these results do make one suspicious of a 
change in the rate of decay of the bulk two-particle correlation at the F = 2 
transition. 
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Finally, let us speculate on a further feature of our exact solution 
isotherm F =  1. We have already noted that Schotte and Schotte's com- 
puter simulation shows a domain structure for 2 > F > 1. It may be that for 
F <  1 all dipoles in the system have ionized, so that F =  1 is the tem- 
perature at which dipoles can first form in the system. If this is true, then 
the situation would be analogous to the two-dimensional two-component 
plasma. There, in the low density limit, computer simulation (11) shows that, 
for 4 > F >  2, there is a mixture of dipoles and ions, while for F <  2 the 
system consists entirely of free charges. Indeed the F =  2 boundary between 
the two regions is again a solvable isotherm. ~ 

A P P E N D I X  

We want to derive the dipole moment sum rule (3.15). First, from the 
exact expression (2.38) one can check the symmetry relations 

T t p+..+(m,la_l/2, ma)= 7. +la) (A1) p+, ,+(lo, ma+  1/2, m ~ - m '  

pr__+(l, 1/2, la__l/2, ma )__p+,+,7 (l',la, m~+l/2) (A2) 

Using these relationships, one finds that the left-hand side of (3.15) 
becomes 

(la+ma+ l/2) ~ Pr+,+,_(m',la, ma+ l/2) 
m '  ~ - - o o  

--2 ~ m'pr+,+._(m ', l~,m~+ 1/2) 
m ' ~  - - c o  

(A3) 

Since 

e 2"'m(t ")=6(t-s), It-sl < 1 (A4) 
m = - - c o  

we obtain, after using the expression (2.38) and interchanging the order of 
summation and integration, the result 

pr+,+,_(m',la, ma+ l/2)=I-[S2(rn~+ l/2-la)] 2 (A5) 
m ' ~  --073 
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where 

1 I=[2S2(ma+l-la)-S~ 2-la)l ~22T 

f~dt sin 2zr(ma + 1/2 - la)t 
• (A6) 

To evaluate the remaining term in (A3), we require the formulas 

1 ~o me 2•im(t-s) 6'(t--s), tt--s[ < 1 (A7) 

f~ ds f~ dt f(t) g(s)f'(t-s) 

= ~  [ f (1)  g(1) - - f (0)  g(0)] - ds g(s)f'(s) (A8) 

Then, after using the expression (2.38) and interchanging the order of sum- 
mation and integration, we have the result 

~ m'Pr+,+_(m',la, ma+�89 
m ' ~  --oo 

= �89 + l~ + �89  (rn a + �89 [S2(m a + �89 - /~)]2  

+ �89 + �89 l~) S2(ma + �89 la) So(ma + �89 la) (A9) 

Substituting (A5) and (A9) in (A3) and recalling the expression (2.33) for 
pT+(l~-- 1/2, m~), we obtain the sum rule (3.15). 

Forrester 
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